高职单招网欢迎您!
首页 重庆 四川 湖南 福建 河南 广东 湖北 江苏 浙江 山东 安徽 海南 江西 广西 北京 天津 河北 山西 辽宁 吉林 上海 贵州 云南 新疆 陕西 甘肃 青海 宁夏 黑龙江 西藏 内蒙古
您当前位置:江苏单招网>>单招试题>>单招语文>>文章详情

2009年江苏高考数学试题

来源:互联网

时间:2014-03-30

阅读数:642

扫码关注高职单招网

扫码关注大先生教育

数学Ⅰ试题
 
 
 
 
注 意 事 项
考生在答题前请认真阅读本注意事项及各题答题要求
1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题)。本卷满分160分,考试时间为120分钟。考试结束后,请将本卷和答题卡一并交回。
2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。
4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。作答必须用0.5毫米黑色墨水的签字笔。请注意字体工整,笔迹清楚。
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。
6.请保持答题卡卡面清洁,不要折叠、破损。
 
 
 
参考公式:
样本数据的方差
一、填空题:本大题共14小题,每小题5分,共70分。请把答案填写在答题卡相应的位置上. 
1.若复数其中是虚数单位,则复数的实部为   ▲    。
【解析】考查复数的减法、乘法运算,以及实部的概念。   -20
2.已知向量和向量的夹角为,,则向量和向量的数量积= ▲。
【解析】 考查数量积的运算。  
3.函数的单调减区间为   ▲     
【解析】 考查利用导数判断函数的单调性。
由得单调减区间为。亦可填写闭区间或半开半闭区间。
4.函数(为常数,)在闭区间上的图象如图所示,则=   ▲   .
【解析】 考查三角函数的周期知识。
 ,,所以,
5.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m的概率为   ▲   .
【解析】 考查等可能事件的概率知识。  
从5根竹竿中一次随机抽取2根的可能的事件总数为10,它们的长度恰好相差0.3m的事件数为2,分别是:2.5和2.8,2.6和2.9,所求概率为0.2。
6.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:
 
学生1号2号3号4号5号甲班67787乙班67679
则以上两组数据的方差中较小的一个为=   ▲   .
【解析】 考查统计中的平均值与方差的运算。
甲班的方差较小,数据的平均值为7,
故方差 
7.右图是一个算法的流程图,最后输出的  ▲  .
【解析】 考查读懂算法的流程图的能力。
22
8.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为  ▲  .   
【解析】 考查类比的方法。体积比为1:8 
9.在平面直角坐标系中,点P在曲线上,且在第二象限内,已知曲线C在点P处的切线的斜率为2,则点P的坐标为  ▲   .
【解析】 考查导数的几何意义和计算能力。  
,又点P在第二象限内,点P的坐标为(-2,15)
10.已知,函数,若实数、满足,则、的大小关系为   ▲   .
【解析】考查指数函数的单调性。  
,函数在R上递减。由得:m<n
11.已知集合,若则实数的取值范围是,其中=   ▲   .   
【解析】 考查集合的子集的概念及利用对数的性质解不等式。
 由得,;由知,所以4。
12.设和为不重合的两个平面,给出下列命题:
(1)若内的两条相交直线分别平行于内的两条直线,则平行于;
(2)若外一条直线与内的一条直线平行,则和平行;
(3)设和相交于直线,若内有一条直线垂直于,则和垂直;
(4)直线与垂直的充分必要条件是与内的两条直线垂直。
上面命题中,真命题的序号   ▲     (写出所有真命题的序号).  
【解析】 考查立体几何中的直线、平面的垂直与平行判定的相关定理。
真命题的序号是(1)(2)
13.如图,在平面直角坐标系中,为椭圆的四个顶点,为其右焦点,直线与直线相交于点T,线段与椭圆的交点恰为线段的中点,则该椭圆的离心率为    ▲      .
【解析】 考查椭圆的基本性质,如顶点、焦点坐标,离心率的计算等。以及直线的方程。
直线的方程为:;
直线的方程为:。二者联立解得:,
则在椭圆上,
, 
解得:
14.设是公比为的等比数列,,令,若数列有连续四项在集合中,则=    ▲    .
【解析】 考查等价转化能力和分析问题的能力。等比数列的通项。w.w.w.k.s.5.u.c.o.m    
有连续四项在集合,四项成等比数列,公比为,= -9
二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤. 
15.(本小题满分14分)
设向量 
(1)若与垂直,求的值;
(2)求的最大值;
(3)若,求证:∥   
【解析】 本小题主要考查向量的基本概念,同时考查同角三角函数的基本关系式、二倍角的正弦、两角和的正弦与余弦公式,考查运算和证明得基本能力。满分14分。
 
16.(本小题满分14分)
如图,在直三棱柱中,、分别是、的中点,点在上,。 
求证:(1)EF∥平面ABC; 
(2)平面平面.
【解析】 本小题主要考查直线与平面、平面与平面得位置关系,考查空间想象能力、推理论证能力。满分14分。
 
 
17.(本小题满分14分)
设是公差不为零的等差数列,为其前项和,满足。
(1)求数列的通项公式及前项和;w.w.w.k.s.5.u.c.o.m    
(2)试求所有的正整数,使得为数列中的项。w.w.w.k.s.5.u.c.o.m    
【解析】 本小题主要考查等差数列的通项、求和的有关知识,考查运算和求解的能力。满分14分。
(1)设公差为,则,由性质得,因为,所以,即,又由得,解得,,
(2) (方法一)=,设
则=,   所以为8的约数
 
(方法二)因为为数列中的项,
故为整数,又由(1)知:为奇数,所以
经检验,符合题意的正整数只有。
18.(本小题满分16分)
在平面直角坐标系中,已知圆和圆.
(1)若直线过点,且被圆截得的弦长为,求直线的方程;
(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线和,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标。
【解析】 本小题主要考查直线与圆的方程、点到直线的距离公式,考查数学运算求解能力、综合分析问题的能力。满分16分。
(1)设直线的方程为:,即
由垂径定理,得:圆心到直线的距离,
结合点到直线距离公式,得:   
化简得:
求直线的方程为:或,即或
(2) 设点P坐标为,直线、的方程分别为:
,即:
因为直线被圆截得的弦长与直线被圆截得的弦长相等,两圆半径相等。由垂径定理,得::圆心到直线与直线的距离相等。w.w.w.k.s.5.u.c.o.m    
故有:,
化简得:
关于的方程有无穷多解,有:   
解之得:点P坐标为或。
19.(本小题满分16分)
按照某学者的理论,假设一个人生产某产品单件成本为元,如果他卖出该产品的单价为元,则他的满意度为;如果他买进该产品的单价为元,则他的满意度为.如果一个人对两种交易(卖出或买进)的满意度分别为和,则他对这两种交易的综合满意度为.
现假设甲生产A、B两种产品的单件成本分别为12元和5元,乙生产A、B两种产品的单件成本分别为3元和20元,设产品A、B的单价分别为元和元,甲买进A与卖出B的综合满意度为,乙卖出A与买进B的综合满意度为
(1)求和关于、的表达式;当时,求证:=;
(2)设,当、分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少?
(3)记(2)中最大的综合满意度为,试问能否适当选取、的值,使得和同时成立,但等号不同时成立?试说明理由。
【解析】 本小题主要考查函数的概念、基本不等式等基础知识,考查数学建模能力、抽象概括能力以及数学阅读能力。满分16分。
(1)
当时,,
,     =
(2)当时,
 
由,
故当即时,
甲乙两人同时取到最大的综合满意度为。
(3)(方法一)由(2)知:=
由得:,
令则,即:。
同理,由得:
另一方面,
当且仅当,即=时,取等号。
所以不能否适当选取、的值,使得和同时成立,但等号不同时成立。
 
 
20.(本小题满分16分)
设为实数,函数.
(1)若,求的取值范围;
(2)求的最小值;
(3)设函数,直接写出(不需给出演算步骤)不等式的解集.
【解析】本小题主要考查函数的概念、性质、图象及解一元二次不等式等基础知识,考查灵活运用数形结合、分类讨论的思想方法进行探索、分析与解决问题的综合能力。满分16分
(1)若,则
(2)当时,
  当时,
  综上
(3)时,得,
当时,;
当时,△>0,得:
讨论得:当时,解集为;
当时,解集为;
当时,解集为.
 
数学Ⅱ(附加题)
参考公式:
21.[选做题]在A、B、C、D四小题中只能选做两题,每小题10分,共计20分。请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤。
A.选修4 - 1:几何证明选讲
如图,在四边形ABCD中,△ABC≌△BAD.
求证:AB∥CD.
【解析】 本小题主要考查四边形、全等三角形的有关知识,考查推理论证能力。满分10分。
证明:由△ABC≌△BAD得∠ACB=∠BDA,故A、B、C、D四点共圆,从而∠CBA=∠CDB。再由△ABC≌△BAD得∠CAB=∠DBA。因此∠DBA=∠CDB,所以AB∥CD。
 
 
B. 选修4 - 2:矩阵与变换
求矩阵的逆矩阵.
【解析】 本小题主要考查逆矩阵的求法,考查运算求解能力。满分10分。
解:设矩阵A的逆矩阵为则
即故
解得:,
从而A的逆矩阵为.
C. 选修4 - 4:坐标系与参数方程
已知曲线C的参数方程为(为参数,).
求曲线C的普通方程。
【解析】本小题主要考查参数方程和普通方程的基本知识,考查转化问题的能力。满分10分。
解:因为所以
故曲线C的普通方程为:.
D. 选修4 - 5:不等式选讲
设≥>0,求证:≥.
【解析】 本小题主要考查比较法证明不等式的常见方法,考查代数式的变形能力。满分10分。
证明:
因为≥>0,所以≥0,>0,从而≥0,
即≥.
[必做题]第22题、第23题,每题10分,共计20分。请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤。
22.(本题满分10分)
在平面直角坐标系中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在轴上。
(1)求抛物线C的标准方程;
(2)求过点F,且与直线OA垂直的直线的方程;
(3)设过点的直线交抛物线C于D、E两点,ME=2DM,记D和E两点间的距离为,求关于的表达式。
【解析】 [必做题]本小题主要考查直线、抛物线及两点间的距离公式等基本知识,考查运算求解能力。满分10分。
     
 
23. (本题满分10分)
对于正整数≥2,用表示关于的一元二次方程有实数根的有序数组的组数,其中(和可以相等);对于随机选取的(和可以相等),记为关于的一元二次方程有实数根的概率。
(1)求和;
(2)求证:对任意正整数≥2,有.
【解析】 [必做题]本小题主要考查概率的基本知识和记数原理,考查探究能力。满分10分。
 
免责声明:本文系本网编辑转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与本网联系,我们将在第一时间删除内容,联系电话:023-88190008!

想对作者说点什么?

我来说一句

请先登录

相关新闻

江苏单招网合作热线

400-0509-023

周一至周日:9:00-21:00

高职单招网新浪博客

立即关注

2013-2019 江苏单招网, All Rights Reserved. | 渝ICP备16012042号-2 | 渝公网备 50011202500631号

公司地址:重庆市渝北区嘉州协信中心B栋9层(重庆教育考试院旁)| 广告投放:15023308442(曾老师) |合作加盟:15025359797(刘老师)

×
  • 真实姓名:
  • 手机号码:
  • 意向学校:
  • 意向专业:
  • 邀答数量:
  • 毕业学校
  • QQ号码: